0.5368 (7)	0.6593 (8)	0.8832 (7)	0.057 (3
0.6318 (10)	0.5817 (11)	0.7968 (10)	0.039 (3
1.1920 (7)	0.6483 (9)	0.8257 (8)	0.062 (3
1.1344 (10)	0.5666 (11)	0.7283 (10)	0.039 (3
1.2303 (8)	0.4818 (9)	0.6476 (7)	0.053 (3
	0.5368 (7) 0.6318 (10) 1.1920 (7) 1.1344 (10) 1.2303 (8)	0.5368 (7) 0.6593 (8) 0.6318 (10) 0.5817 (11) 1.1920 (7) 0.6483 (9) 1.1344 (10) 0.5666 (11) 1.2303 (8) 0.4818 (9)	0.5368 (7) 0.6593 (8) 0.8832 (7) 0.6318 (10) 0.5817 (11) 0.7968 (10) 1.1920 (7) 0.6483 (9) 0.8257 (8) 1.1344 (10) 0.5666 (11) 0.7283 (10) 1.2303 (8) 0.4818 (9) 0.6476 (7)

Table 2. Bond lengths (Å) and angles (°)

Br(1)C(2)	1.975 (9)	O(4)—C(4)	1.22 (1)
C(2)C(3)	1.52 (1)	C(2)—C(1)	1.52 (1)
C(3)C(4)	1.51 (1)	O(3)—C(4)	1.28 (1)
O(1)C(1)	1.25 (1)	C(1)—O(2)	1.28 (1)
$\begin{array}{l} Br(1)C(2)C(3)\\ C(3)C(2)C(1)\\ O(4)C(4)C(3)\\ C(3)C(4)O(3)\\ C(2)C(1)O(2) \end{array}$	109.3 (6) 111.8 (7) 121.9 (8) 113.6 (8) 114.2 (8)	Br(1)-C(2)-C(1) C(2)-C(3)-C(4) O(4)-C(4)-O(3) C(2)-C(1)-O(1) O(1)-C(1)-O(2)	102.9 (6) 112.0 (7) 124.5 (7) 121.3 (8) 124.5 (7)

Reflections were corrected for crystal decay. The structure was solved by direct methods. Reflections in the range $-3\sigma_I \le I \le 3\sigma_I [\sigma_I = (N_p + N_b)^{1/2}]$, where N_p is the number of counts in the peak and N_b is the number of counts in the background] were treated by the method of French & Wilson (1978). Reflections with k = 6 were not used in refinement because the crystal was twinned and the twin interfered with this layer. H atoms were placed in calculated positions, with fixed temperature factors, and were constrained to ride on the atoms to which they were attached. Anomalous-dispersion corrections were applied to N, O and Br atoms. Calculations were made using *SHELXTL PC* (Sheldrick, 1990) and Laser 386 or IBM486 computers.

We acknowledge, with thanks, financial support from the Natural Sciences and Engineering Council of Canada.

Lists of structure factors, anisotropic thermal parameters, H-atom positional parameters and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55932 (6 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: BR1027]

References

- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Brewster, P., Hughes, E. D., Ingold, C. K. & Rao, P. A. D. S. (1950). Nature (London), 166, 178-179.
- Duarte, M., Frampton, C., Howard-Lock, H. E., Lock, C. J. L. & Wu, H. (1989). Acta Cryst. C45, 1028–1031.
- French, S. & Wilson, K. (1978). Acta Cryst. A34, 517-525.
- Howard-Lock, H. E., Lock, C. J. L., Mewa, A. & Kean, W. F. (1986). Seminars Arthrit. Rheum. 15, 261-281.
- Ingold, C. K. (1953). Structure and Mechanism in Organic Chemistry, p. 386. New York: Cornell Univ. Press.
- Kean, W. F., Lock, C. J. L. & Howard-Lock, H. E. (1991). Lancet, 338, 1565–1568.
- McKague, K. M. S., Lock, C. J. L., McCrae, F., Smith, W. E., Buchanan, H., Kean, W. F. & Reglinski, J. (1993). J. Pharm. Sci. 82, 174–178.
- Rogers, D. (1981). Acta Cryst. A37, 734-741.
- Sheldrick, G. M. (1990). SHELXTL PC. Release 4.1. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.

Skosey, J. L. (1985). Arthritis and Allied Conditions, edited by D. J. McCarty, pp. 487–496. Philadelphia: Lea and Febiger.

Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 1224–1227

(+)-(R)- and Racemic Forms of 2,2'-Dihydroxy-1,1'-binaphthyl

Kenichi Mori, Yoshiya Masuda and Setsuo Kashino*

Department of Chemistry, Faculty of Science, Okayama University, Tsushima, Okayama 700, Japan

(Received 23 June 1992; accepted 4 January 1993)

Abstract

The molecules of 1,1'-binaphthyl-2,2'-diol, related by a 3_1 axis in the (+)-(R) form and by a 2_1 axis in the racemic form, are linked through hydrogen bonds between the hydroxyl groups. The dihedral angles between the planes of the naphthyl groups are close to 90° for the molecules in both crystals: 101.65 (5)° in the (+)-(R) form and 90.58 (4)° in the racemic form.

Comment

Optical isomers exist for the title compound (I) because of steric hindrance around the $C(sp^2)$ — $C(sp^2)$ bond between the naphthyl groups (Akimoto, Shioiri, Iitaka & Yamada, 1968). The present work has been carried out in order to determine the molecular conformation, the mode of hydrogen

bonding and the relationship between the molecular arrangements in the crystals of the (+)-(R) and racemic forms which were formed from toluene and ethanol solutions, respectively, by slow evaporation. For the latter form, the atomic parameters of the non-H atoms have been reported (Gridunova, Furmanova, Shklover, Struchkov, Ezhkova & Chayanov, 1982), but the H-atom positions to specify the hydrogen bonding have not been determined.

Corresponding bond lengths and angles in both forms of the crystals are in agreement within their e.s.d.'s. Corresponding bond lengths and angles of the two naphthyl groups in each molecule are substantially the same. In both crystals, C(1)—C(2)

.00 © 1993 International Union of Crystallography

bonds are longer than C(3)—C(4) as found in racemic and optically active forms of 1,1'-binaphthyl (Kress, Duesler, Etter, Paul & Curtin, 1980) and other 1,1'-binaphthyl derivatives: 4,4'-diamino-1,1'-binaphthyl (Pauptit & Trotter, 1983), (-)-2,2'bisbromomethyl-1,1'-binaphthyl (Harata & Tanaka, 1973), (+)-2,2-dihydroxy-1,1'-binaphthalene-3,3'-dicarboxylic acid dimethyl ester (Akimoto & Iitaka, 1969), and optically active 4,4'-dimethyl-1,1'-binaphthyl (Pauptit & Trotter, 1981).

Fig. 1. The thermal ellipsoids with atomic numbering. Ellipsoids of 50% probability are drawn for the non-H atoms of the (+)-(R) form; the H atoms are represented as spheres equivalent to B = 1.0 Å².

Fig. 2. Stereoscopic view of the crystal structures viewed down the c axes. The intermolecular hydrogen bonds are shown by thin lines. (a) The (+)-(R) form; the b axis points upwards and the a axis from left to right. (b) The racemic form; the b axis points upwards and the a axis from left to right.

The torsion angle χ [C(2)—C(1)—C(11)—C(19)] is 99.2 (3)° in the (+)-(*R*) form and 88.6 (3)° in the racemic form. According to *MM*2 calculations (Allinger & Yuh, 1985), the steric energy at the observed conformation is higher than the minimum energy at $\chi = 90^{\circ}$ by only 0.59 kJ mol⁻¹ in the (+)-(*R*) form and by 0.04 kJ mol⁻¹ in the racemic form.

In both crystals, angles C(1)—C(2)—O(1) and C(11)—C(12)—O(2) are larger than the sp^2 angles because of the steric repulsions O(1)…C(11) and O(2)…C(1), respectively [2.855 (4) and 2.873 (3) Å in the (+)-(R) form, 2.873 (3) and 2.859 (4) Å in the racemic form].

In the (+)-(R) form, the intermolecular hydrogen bonding is formed around a 3_1 axis [O(1)...O(2) 2.961 (4), H(2)...O(2) 2.11 (4) Å, O(1)--H(2)...O(2) 152 (3)°], while in the racemic form the hydrogen bonding is formed around a 2_1 axis [O(1)...O(2) 2.852 (3), H(2)...O(2) 2.03 (4) Å, O(1)--H(2)...O(2) 141 (3)°]. Thus, the crystal structures of both forms are totally different from each other.

Experimental

(+)-(*R*) form *Crystal data* $C_{20}H_{14}O_2$ *M_r* = 286.33 Trigonal *P*3₁ *a* = 10.808 (2) Å *c* = 10.883 (1) Å *V* = 1101.0 (4) Å³ *Z* = 3 *D_x* = 1.295 Mg m⁻³ *D_m* = 1.30 Mg m⁻³ Density measured by flotation in aqueous KI

Data collection

Rigaku AFC-5 diffractometer ω -2 θ scans; width 1.2 + 0.15tan θ)° in ω ; rate 4° min⁻¹ in ω ; background counts 4 s on each side of every scan Absorption correction: none 1266 measured reflections 1091 independent reflections

Refinement

Refinement on F Final R = 0.03wR = 0.039 Cu $K\alpha$ radiation $\lambda = 1.54178$ Å Cell parameters from 20 reflections $\theta = 19-20^{\circ}$ $\mu = 0.621 \text{ mm}^{-1}$ T = 295 KPrism elongated along c $0.38 \times 0.30 \times 0.25 \text{ mm}$ Colourless Crystal source: recrystallized from toluene solution, TCI EP B1142

1077 observed reflections $[F > 1.0\sigma(F)]$ $R_{int} = 0.02$ $\theta_{max} = 60.0^{\circ}$ $h = 0 \rightarrow 12$ $k = 0 \rightarrow 12$ $l = -12 \rightarrow 12$ 3 standard reflections monitored every 97 reflections intensity variation: 1.2%

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} = 0.05\\ \Delta\rho_{\rm max} = 0.09 \ {\rm e} \ {\rm \AA}^{-3}\\ \Delta\rho_{\rm min} = -0.13 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

REGULAR STRUCTURAL PAPERS

S = 1.357	Atomic scattering factors	C(5)	0.0834 (3)	0.3741 (3)	0.8953 (3)	4.5 (1)
1077 reflections	from International Tables	C(6)	0.1477 (3)	0.4660 (3)	0.9899 (3)	5.1 (1)
258 parameters	for X-ray Crystallogra-	C(7)	0.2967 (3)	0.5395 (3)	1.0015(2)	4.0(1)
All H-atom parameters re-	phy (1974, Vol. IV, Table	C(8)	0.3167(2)	0.4253 (2)	0.8164(2)	3.15 (8)
fined	2.2B)	C(10)	0.1655 (2)	0.3527 (2)	0.8052 (2)	3.47 (9)
$m = 1/[\sigma^2(E) = 0.0017[E]$	2.22)	C(11)	0.5588 (2)	0.4762 (2)	0.7343 (2)	3.37 (9)
$w = 1/[0 (1) = 0.0017 P_0 $		C(12)	0.6243 (3)	0.4007 (3)	0.7708 (2)	4.3 (1)
$+0.009 F_o ^2$]		C(13)	0.7743 (3)	0.4660 (4)	0.7752 (3)	6.1 (1)
		C(14) C(15)	0.8571 (3)	0.0030 (4)	0.7397 (3)	5.4 (1) 4.6 (1)
Racemic form		C(16)	0.8161 (3)	0.9024 (3)	0.6122 (3)	5.0(1)
Crustal data		C(17)	0.6688 (3)	0.8411 (3)	0.6165 (3)	5.0 (1)
Crystat aata		C(18)	0.5856 (3)	0.7040 (3)	0.6566 (2)	3.9 (1)
$C_{20}H_{14}O_2$	Cu $K\alpha$ radiation	C(19)	0.6447 (2)	0.6211 (3)	0.6971 (2)	3.37 (9)
$M_r = 286.33$	$\lambda = 1.54178 \text{ Å}$	C(20)	0.7964 (2)	0.6857 (3)	0.6973 (2)	4.0 (1)
Orthorhombic	Cell parameters from 20	Racemi	c fo r m			
Iba2	reflections	O(1)	0.1326 (1)	0.17199 (9)	0.8636 (2)	5.47 (9)
a = 15.696 (2) Å	$\theta = 19-21^{\circ}$	O(2)	0.2450 (1)	0.27154 (8)	0.5628 (2)	4.48 (8)
h = 21.617 (2) Å	$\mu = 0.623 \text{ mm}^{-1}$	C(1)	0.2123 (1)	0.1446 (1)	0.6346 (3)	3.08 (9)
c = 8.6253.(6) Å	T = 295 K	C(2)	0.1396 (1)	0.1439 (1)	0.7218 (3)	3.7 (1)
$V = 2026.6 (4) Å^3$	Plate developed (010)	C(3)	0.0656 (1)	0.1137(1) 0.0829(1)	0.6703 (3)	4.3(1)
V = 2920.0 (4) A	$0.25 \times 0.20 \times 0.10$ mm	C(4) C(5)	0.1413 (2)	0.0496(1)	0.2942 (4)	4.8 (1)
Z = 0		C(6)	0.2114 (2)	0.0510(1)	0.2038 (4)	5.9 (2)
$D_x = 1.300 \text{ Mg m}^{-3}$	Colouriess	C(7)	0.2840 (2)	0.0839 (2)	0.2518 (4)	5.7 (1)
$D_m = 1.30 \text{ Mg m}^3$	Crystal source: recrystallized	C(8)	0.2850 (1)	0.1136 (1)	0.3904 (4)	4.4 (1)
Density measured by flota-	from ethanol solution, TC	C(9)	0.2133 (1)	0.1132 (1)	0.4885 (3)	3.35 (9)
tion in aqueous KI	EP B0461	C(10)	0.1397(1) 0.2894(1)	0.0009(1) 0.1785(1)	0.4383 (3)	3.0 (1) 2 07 (0)
		C(12)	0.2997 (1)	0.2401 (1)	0.6591 (3)	3.36 (9)
Data collection		C(13)	0.3672 (1)	0.2752 (1)	0.7215 (3)	4.0 (1)
Rigaku AFC-5 diffractome-	1197 observed reflections	C(14)	0.4243 (1)	0.2484 (1)	0.8165 (3)	4.1 (1)
ter	$[F > 10\sigma(F)]$	C(15)	0.4783 (1)	0.1548 (1)	0.9519 (3)	4.3 (1)
(1, 2) scans: width 1.2 +	$R_{\rm c} = 0.020$	C(16)	0.4733 (2)	0.0931 (1)	0.9815 (3)	5.0(1)
$(0.15 \tan \theta)^{\circ}$ in (1) rate A°	$A = 62.5^{\circ}$	C(17) C(18)	0.3482 (1)	0.0377(1)	0.9140(3) 0.8222(3)	4.0(1)
$0.15 \tan \theta$ $1 \sin \theta$, $\tan \theta$	$b_{\rm max} = 02.5$	C(19)	0.3512 (1)	0.1489 (1)	0.7892 (3)	3.19 (9)
min in ω ; background	$h = 0 \rightarrow 24$	C(20)	0.4194 (1)	0.1842 (1)	0.8531 (3)	3.49 (9)
counts 4 s on each side of	$k = 0 \rightarrow 24$					
every scan	$l = 0 \rightarrow 9$		T-11-2 C.		()	
Absorption correction:	3 standard reflections		Table 2. Ge	ometric paran	neters (A, ⁻)	
none	monitored every 97			$(+)_{(R)}$ form	Racemic form	
1358 measured reflections	reflections		O(1)-C(2)	1.365 (4)	1.370 (4)	
1258 independent reflections	intensity variation: 0.8%		O(2)—C(12)	1.374 (4)	1.374 (4)	
•	•		C(1) - C(2)	1.383 (4)	1.367 (4)	
Refinement			C(1)-C(11)	1.494 (4)	1.500 (4)	
Definement on F	$(\Lambda/\pi) = 0.19$		C(2)—C(3)	1.411 (4)	1.407 (4)	
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	$(\Delta/0)_{\text{max}} = 0.19$		C(3) - C(4) C(4) - C(10)	1.349 (4) 1 417 (4)	1.354 (4)	
$F_{\text{IIIIaI}} R = 0.034$	$\Delta \rho_{\rm max} = 0.10 \ {\rm e \ A}^3$		C(5)—C(6)	1.356 (4)	1.349 (4)	
wR = 0.039	$\Delta \rho_{\rm min} = -0.13 \ {\rm e} \ {\rm A}^{-3}$		C(5)-C(10)	1.417 (4)	1.417 (4)	
S = 1.214	Atomic scattering factors		C(6) - C(7) C(7) - C(8)	1.400 (4)	1.405 (4)	
1197 reflections	from International Tables		C(8)—C(9)	1.416 (4)	1.408 (4)	
258 parameters	for X-ray Crystallogra-		C(9) - C(10)	1.421 (3)	1.422 (4)	
All H-atom parameters re-	phy (1974, Vol. IV, Table		C(11) - C(12) C(11) - C(19)	1.422 (4)	1.430 (4)	
fined	2.2B)		C(12)-C(13)	1.408 (5)	1.410 (4)	
$w = 1/[\sigma^2(F) - 0.0340 F_o $	-		C(13) - C(14) C(14) - C(20)	1.353 (6)	1.345 (4) 1 425 (4)	
$+0.0042 F_{c} ^{2}$	· · ·		C(15)-C(16)	1.350 (6)	1.360 (4)	
			C(15)-C(20)	1.434 (5)	1.409 (4)	
	•• • • •		C(16) - C(17) C(17) - C(18)	1.386 (5)	1.402 (4) 1.364 (4)	
Table 1. Fractional atomic	coordinates and equivalent		C(18)-C(19)	1.406 (4)	1.415 (4)	*
isotropic therma	l parameters (Ų)		C(19)-C(20)	1.425 (4)	1.425 (4)	
			O(1) - H(2) O(2) - H(12)	0.93 (4)	0.97 (4)	
$B_{eq} = \frac{4}{2} \Sigma$	$\Delta_i \beta_{ii} / a^{*2}$.					

119.0 (2) 119.1 (2) 121.8 (2) 122.8 (3) 116.2 (3) 121.0 (3) 121.0 (3) 121.6 (3) 120.7 (3) 120.5 (3)

119.2 (3) 119.7 (3) 121.0 (3) 123.6 (3) 114.9 (3) 121.5 (3) 120.1 (3) 121.3 (3) 120.9 (3)

120.9 (3) 120.2 (3)

 $\begin{array}{c} C(2) - H(12) \\ C(2) - C(1) - C(9) \\ C(2) - C(1) - C(11) \\ C(9) - C(1) - C(2) - C(11) \\ O(1) - C(2) - C(3) \\ O(1) - C(2) - C(3) \\ C(1) - C(2) - C(3) \\ C(2) - C(3) - C(4) \\ C(3) - C(4) - C(10) \\ C(3) - C(4) - C(10) \\ C(6) - C(5) - C(10) \\ C(5) - C(6) - C(7) \end{array}$

		$B_{\rm eq} = \frac{4}{3} \sum_i \beta_{ii} / a$	* ²	
	x	y	z	Bea
(+)-(R)	form	•		
Ò(1)	0.4028 (2)	0.2926 (2)	0.5348 (2)	4.75 (8)
O(2)	0.5488 (2)	0.2585 (2)	0.8018 (2)	5.84 (9)
cùí	0.3997 (2)	0.4035 (2)	0.7263 (2)	3.16 (8)
C(2)	0.3311 (2)	0.3150 (2)	0.6274 (2)	3.57 (9)
C(3)	0.1810 (3)	0.2431 (3)	0.6169 (3)	4.3 (1)
C(4)	0.1017 (2)	0.2608 (3)	0.7033 (3)	4.0 (1)

C(6)—C(7)—C(8)	120.3 (3)	120.5 (3)
C(7)-C(8)-C(9)	121.1 (3)	121.1 (3)
C(1)-C(9)-C(8)	122.4 (2)	122.3 (3)
C(1) - C(9) - C(10)	119.6 (2)	119.4 (3)
C(8)-C(9)-C(10)	117.9 (2)	118.3 (3)
C(4)-C(10)-C(5)	122.1 (2)	122.7 (3)
C(4) - C(10) - C(9)	118.5 (2)	118.4 (3)
C(5)-C(10)-C(9)	119.5 (2)	118.9 (3)
C(1) - C(11) - C(12)	120.1 (3)	119.9 (2)
C(1)-C(11)-C(19)	120.6 (3)	121.5 (2)
C(12)-C(11)-C(19)	119.2 (3)	118.5 (2)
O(2) - C(12) - C(11)	122.6 (3)	122.2 (3)
O(2) - C(12) - C(13)	116.3 (3)	115.7 (3)
C(11) - C(12) - C(13)	121.1 (3)	122.1 (3)
C(12)-C(13)-C(14)	120.2 (4)	120.1 (3)
C(13)-C(14)-C(20)	121.5 (4)	121.2 (3)
C(16)-C(15)-C(20)	121.2 (4)	121.2 (3)
C(15)-C(16)-C(17)	120.4 (4)	119.9 (3)
C(16)-C(17)-C(18)	120.3 (3)	120.7 (3)
C(17)-C(18)-C(19)	122.0 (3)	121.0 (3)
C(11)-C(19)-C(18)	122.4 (3)	122.2 (3)
C(11)-C(19)-C(20)	119.8 (3)	119.7 (2)
C(18)-C(19)-C(20)	117.8 (3)	118.1 (3)
C(14)-C(20)-C(15)	123.6 (3)	122.5 (2)
C(14)-C(20)-C(19)	118.2 (3)	118.4 (2)
C(15)-C(20)-C(19)	118.2 (3)	119.0 (2)
C(2)—O(1)—H(2)	111 (3)	106 (2)
C(12)-O(2)-H(12)	106 (2)	115 (2)

Data collection and cell refinement: Rigaku AFC-5 software (1977). Data reduction: *NTDATAIN* (Tanaka, 1979). Program used to solve structure: *MULTAN11/84* (Main, Germain & Woolfson, 1984). Programs used to refine structure (block-diagonal least squares): *HBLS-V* and *DAPH* (Ashida, 1973). Software used to prepare material for publication: *MOLCON* (Fujii, 1979); *ORTEPII* (Johnson, 1971). Computations were carried out at the Research Center for Protein Engineering, Institute for Protein Research, Osaka University, and at the Okayama University Computer Center.

The authors thank the Research Center for Protein Engineering, Institute for Protein Research, Osaka University, for the use of the facility.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, and bond distances and angles involving H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55956 (13 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: OH1012]

References

- Akimoto, H. & Iitaka, Y. (1969). Acta Cryst. B25, 1491-1500.
- Akimoto, H., Shioiri, T., Iitaka, Y. & Yamada, S. (1969). Tetrahedron Lett. 1, 97-102.
- Allinger, N. L. & Yuh, Y. H. (1985). MM2. Program for molecular-mechanics calculations. Quantum Chemistry Program Exchange, Indiana Univ., Indiana, USA.
- Ashida, T. (1973). HBLS-V and DAPH. The Universal Crystallographic Computing System – Osaka. The Computation Center, Osaka Univ., Japan.
- Fujii, S. (1979). MOLCON. The Universal Crystallographic Computing System - Osaka. The Computation Center, Osaka Univ., Japan.
- Gridunova, G. V., Furmanova, N. G., Shklover, Y. E., Struchkov, Yu. T., Ezhkova, Z. I. & Chayanov, B. A. (1982). Sov. Phys. Crystallogr. 27, 290-294.
- Harata, K. & Tanaka, J. (1973). Bull. Chem. Soc. Jpn, 46, 2747-2751.
- Johnson, C. K. (1971). ORTEPII. Report ORNL-3794 revised. Oak Ridge National Laboratory, Tennessee, USA.

- Kress, R. B., Duesler, E. N., Etter, M. C., Paul, I. C. & Curtin, D. Y. (1980). J. Am. Chem. Soc. 102, 7709–7714.
- Main, P., Germain, G. & Woolfson, M. M. (1984). MULTAN11/84. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Pauptit, R. A. & Trotter, J. (1981). Can. J. Chem. 59, 1149-1152.
- Pauptit, R. A. & Trotter, J. (1983). Can. J. Chem. 61, 69-71.
- Tanaka, N. (1979). NTDATAIN. Program for data reduction. The Research Center for Protein Engineering, Institute for Protein Research, Osaka Univ., Japan.

Acta Cryst. (1993). C49, 1227-1230

Structure of 6-*O*-Methylerythromycin A (Clarithromycin)

HITOSHI IWASAKI AND YOKO SUGAWARA

RIKEN (The Institute of Physical and Chemical Research), Wako-shi, Saitama 351-01, Japan

Takashi Adachi,* Shigeo Morimoto and Yoshiaki Watanabe

Research Center, Taisho Pharmaceutical Co., Ltd, 1-403 Yoshino-cho, Ohmiya-shi, Saitama 330, Japan

(Received 3 July 1992; accepted 5 January 1993)

Abstract

The absolute configuration of the asymmetric centers in clarithromycin is the same as that in erythromycin A [Harris, McGeachin & Mills (1965). *Tetrahedron Lett.* pp. 679–685; Oliver & Strickland (1986). *Acta Cryst.* C42, 952–956]. The molecular structure is similar to that of erythromycin A. The carbonyl and the hydroxyl groups of the 14-membered aglycone are on the same side of the aglycone ring, and the 6-O-methyl group is in this hydrophilic region.

Comment

Clarithromycin, (I), a new semisynthetic macrolide antibiotic, has been clinically used for the treatment of infectious diseases caused by aerobic grampositive bacteria, some gram-negative bacteria, anaerobic bacteria, *Mycoplasma* and *Chlamydia*. This antibiotic shows a similar antibacterial spectrum to erythromycin A, and its activity is twofold higher than that of erythromycin A *in vitro*. It exhibits much higher *in vivo* activity than erythromycin A because of its superior pharmacokinetic properties (Morimoto, Misawa, Adachi, Nagate, Watanabe & Omura, 1990; Morimoto, Nagate,

© 1993 International Union of Crystallography